PRODUCT DESIGN
PRODUCT DESIGN
Product
design is cross-functional, knowledge-intensive work that has become
increasingly important in today's fast-paced, globally competitive environment.
It is a key strategic activity in many firms because new products contribute
significantly to sales revenue. When firms are able to develop distinctive
products, they have opportunities to command premium pricing. Product design is
a critical factor in organizational success because it sets the
characteristics, features, and performance of the service or good that
consumers demand. The objective of product design is to create a good or
service with excellent functional utility and sales appeal at an acceptable
cost and within a reasonable time. The product should be produced using
high-quality, low-cost materials and methods. It should be produced on
equipment that is or will be available when production begins. The resulting
product should be competitive with or better than similar products on the
market in terms of quality, appearance, performance, service life, and price.
THE
INCREASING IMPORTANCE
OF PRODUCT DESIGN
Product
design is more important than ever because customers are demanding greater
product variety and are switching more quickly to products with
state-of-the-art technology. The impacts of greater product variety and shorter
product life cycles have a multiplicative effect on the number of new products
and derivative products that need to be designed. For example, just a few years
ago, a firm may have produced four different products and each product may have
had a product life cycle of ten years. In this case, the firm must design four
new products every ten years. Today, in order to be competitive, this firm may
produce eight different products with a life cycle of only five years; this firm
must introduce eight new products in five years. That represents sixteen new
products in ten years or one product every seven and one-half months. In this
fast-paced environment, product design ceases to be an ad hoc, intermittent
activity and becomes a regular and routine action. For an organization, delays,
problems, and confusion in product design shift from being an annoyance to
being life threatening.
PRODUCT
DESIGN AND SUPPLY
CHAIN MANAGEMENT
Product
design can also be an important mechanism for coordinating the activities of
key supply chain participants. As organizations outsource the production of
sub-assemblies and components, they also may be asking suppliers to participate
in product design. As they outsource design capabilities it is essential that
they manage and coordinate the flow of information among the supply chain
participants. This can be especially important as firms outsource components to
two or more suppliers. Now, there may be important design interfaces among two,
three, or more suppliers. These interfaces must be properly managed to ensure
cost effective and timely designs. Clearly, information and communication
technologies become important parts of this effort.
PRODUCT
DESIGN: A KEY
TO ORGANIZATIONAL SUCCESS
Product design
is an essential activity for firms competing in a global environment. Product
design drives organizational success because it directly and significantly
impacts nearly all of the critical determinants for success. Customers demand
greater product variety and are quick to shift to new, innovative,
full-featured products. In addition, customers make purchase decisions based on
a growing list of factors that are affected by product design. Previously,
customers made purchase decisions based primarily on product price and/or
quality. While these factors are still important, customers are adding other
dimensions such as customizability, order-to-delivery time, product safety, and
ease and cost of maintenance. Environmental concerns are expanding to include impacts
during production, during the product's operating life, and at the end of its
life (recycle-ability). In addition, customers demand greater protection from
defective products, which leads to lower product liability losses. Safer and
longer lasting products lead to enhanced warrantee provision, which, in turn,
impact customer satisfaction and warrantee repair costs. Programs and activities are being put in place so organizations can cope with these dimensions. Organizations are embracing concepts such as mass customization, design for manufacturing and assembly, product disposal, quality function deployment, and time-based competition. They are using technology such as rapid prototyping and computer-aided design to examine how products function, how much they may cost to produce, and how they may impact the environment. Firms are searching for and implementing new technologies to determine ways to design better products. They are examining legal and ethical issues in product design as well as the impact of product design on the environment.
MASS
CUSTOMIZATION
Mass
customization is the low-cost, high-quality, large volume delivery of
individually customized products. It is the ability to quickly design and
produce customized products on a large scale at a cost comparable to
non-customized products. Customization, cost effectiveness is the ability to
produce highly differentiated products without increasing costs, significantly.
Consumers expect to receive customized products at close to mass-production prices.
Customization volume effectiveness is the ability to increase product variety
without diminishing production volume. As markets become more and more
segmented and aggregate demand remains constant or increases, firms must
continue to design and produce high volumes across the same fixed asset base.
Customization responsiveness is the ability to reduce the time required to
deliver customized products and to reorganize design and production processes
quickly in response to customer requests. It would be counter-productive to
pursue mass customization if a customized product takes too long to produce.
Speed in product design and production is an indispensable criterion for
evaluating an organization's mass customization capability.
DESIGN FOR
MANUFACTURING
AND ASSEMBLY
Improving
manufacturability is an important goal for product design. A systems approach
to product design that was developed by two researchers from England, Geoffrey
Boothroyd and Peter Dewhurst, is called design for manufacturability and
assembly (DFMA). It can be a powerful tool to improve product quality and lower
manufacturing cost. The approach focuses on manufacturing issues during product
design. DFMA is implemented through computer software that identifies designs
concepts that would be easy to build by focusing on the economic implications
of design decisions. These decisions are critical even though design is a small
part of the overall cost of a product because design decisions fix 70 to 90
percent of the manufacturing costs. In application, DFMA has had some startling
successes. With the DFMA software, Texas Instruments reduced assembly time for
an infrared sighting mechanism from 129 minutes to 20 minutes. IBM sliced
assembly time for its printers from thirty minutes to three minutes. Firms are recognizing that the concept behind DFMA can also be extended beyond cost control to design products that are easy to service and maintain. To do this effectively, service and maintenance issues should be considered at the earliest stages of the design. Also, firms will be required to examine disposal during product design as they become liable for recycling the products they make. It can be easier to recycle products if those factors are part of the product design paradigm.
DISPOSAL AND
PRODUCT DESIGN
Disposal is
becoming an increasingly important part of product design. The European Union
is taking the lead by requiring that most of an automobile is recycled by the
year 2010. This requirement has a major impact on product design. The most
obvious effect is to change the notion that a consumer is the final owner for a
product. With this approach, the product returns to the manufacturer to be
recycled and the recycling process should begin in product design. Vehicles
should be designed so they can be disassembled and recycled easily. The
designers should avoid exotic materials that are difficulty to recycle. For
example, parts that have plastic and metal fused together should not be used in
applications where they are difficult to separate. The designers should
determine which parts will be designed to be refurbished and reused, and which
will be designed to be discarded, broken down, and recycled. All this should be
done without adding costs or reducing product quality.
QUALITY AND
QUALITY
FUNCTION DEPLOYMENT
Product
design shapes the product's quality. It defines the way that good and service
functions. Quality has at least two components. First, the product must be
designed to function with a high probability of success, or reliability; that
is, it will perform a specific function without failure under given conditions.
When product reliability increases, the firm can extend the product's warrantee
without increasing customer claims for repairs or returns. Warrantees for
complex and expensive items such as appliances are important selling points for
customers. Second, quality improves when operating or performance
characteristics improve even though reliability does not. The goals of product
design should be greater performance, greater reliability, and lower total
production and operating costs. Quality and costs should not be viewed as a
trade-off because improvements in product and process technologies can enhance
quality and lower costs. Quality function deployment is being used by organizations to translate customer wants into working products. Sometimes referred to as the house of quality, quality function deployment (QFD) is a set of planning and communication routines that focus and coordinate actions and skills within an organization. The foundation of the house of quality is the belief that a product should be designed to reflect customers' desires and tastes. The house of quality is a framework that provides the means for inter-functional planning and communications. Through this framework, people facing different problems and responsibilities can discuss various design priorities.
PROTOTYPING
Engineering
and operations combine to develop models of products called prototypes. These
may be working models, models reduced in scale, or mock-ups of the products.
Where traditional prototype development often takes weeks or months, the
technology for rapid prototyping has become available. Some companies are using
the same technology that creates virtual reality to develop three-dimensional
prototypes. Other firms employ lasers to make prototypes by solidifying plastic
in only a few minutes; this process can produce prototypes with complex shapes.
Prototyping should increase customer satisfaction and improve design stability,
product effectiveness, and the predictability of final product cost and
performance.
COMPUTER-AIDED
DESIGN
Currently,
business managers and engineers perceive computer-aided design (CAD) as a tool
to assist engineers in designing goods. CAD uses computer technology and a
graphic display to represent physical shapes in the same way that engineering
drawings have in the past. It is used in the metalworking industry to display
component parts, to illustrate size and shape, to show possible relationships
to other parts, and to indicate component deformation under specified loads.
After the design has been completed, the engineer can examine many different
views or sections of the part and finally send it to a plotter to prepare
drawings. This capability greatly reduces engineering time and avoids routine
mistakes made in analysis and drawing. It significantly increases productivity
and reduces design time, which allows faster delivery. Applications of CAD systems are not limited to producing goods. While it's true that services do not have physical dimensions, the equipment and facilities used to produce services do. For example, the service stalls in an automotive center or rooms in an emergency medical center have physical characteristics that can be represented by the interactive graphics capabilities of a CAD system.
LEGAL AND
ETHICAL ISSUES
IN PRODUCT DESIGN
What is the
responsibility of an organization and its managers to see that the goods and
services they produce do not harm consumers? Legally, it is very clear that
organizations are responsible for the design and safe use of their products.
Consumers who believe they have been damaged by a poorly designed good or
service have legal recourse under both civil and criminal statutes. Often,
however, only the most serious and obvious offenses are settled in this way.
More difficult ethical issues in product design result when the evidence is not
as clear. For example, what responsibilities does a power tool manufacturer
have with respect to product safety? Does a power saw manufacturer have the
responsibility to design its product so that it is difficult for a child to
operate? Suppose a parent is using a power saw and is called away to the
telephone for a few minutes. A ten-year old may wander over, press the trigger
and be seriously injured. Designing the saw so it has a simple and inexpensive
lockout switch that would have to be pressed simultaneously when the trigger is
pressed would make it more difficult for the accident to happen. What is the
responsibility of the parent? What is the responsibility of the company?
PRODUCT
DESIGN
AND THE ENVIRONMENT
Organizations
consider product design a critical activity to the production of
environmentally friendly products. Organizations increasingly recognize that
being good corporate citizens increases sales. Fast-food restaurants have begun
recycling programs and redesigned packaging materials and systems in response
to customer concerns. In other cases, being a good corporate citizen and
protecting a company's renewable resources go well together; there are win-win
opportunities where an organization can actually design products and processes
that cut costs and increase profits by recapturing pollutants and reducing
solid waste.
OVERVIEW OF
PRODUCT
DESIGN PROCESS
Product
design time can be reduced by using a team approach and the early involvement
of key participants including marketing, research and development, engineering,
operations, and suppliers. Early involvement is an approach to managing people
and processes. It involves an upstream investment in time that facilitates the
identification and solution of down-stream problems that would otherwise
increase product design and production costs, decrease quality, and delay
product introduction. Time-based competitors are discovering that reducing product design time improves the productivity of product design teams. To reduce time, firms are reorganizing product design from an "over-the-wall" process to a team-based concurrent process. Over-the-wall means to proceed sequentially with the limited exchange of information and ideas. When this approach is used, problems are often discovered late because late-stage participants are excluded from decisions made early in the process. As a result, poor decisions are often made.
Product design is a labor-intensive process that requires the contribution of highly trained specialists. By using teams of specialists, communications are enhanced, wait time between decisions is reduced, and productivity is improved. Participants in this team-based process make better decisions faster because they are building a shared knowledge base that enhances learning and eases decision-making. By sharing development activities, design decisions that involve interdependencies between functional specialists can be made more quickly and more effectively. This reorganized process creates a timely response to customer needs, a more cost-effective product design process, and higher-quality products at an affordable price.
There are several reasons why early involvement and concurrent activities bring about these improvements. First, product design shifts from sequential, with feedback loops that occur whenever a problem is encountered, to concurrent, where problems are recognized early and resolved. The ability to overlap activities reduces product design time. Second, when a team of functional specialists works concurrently on product design, the participants learn from each other and their knowledge base expands. People are better able to anticipate conflicts and can more easily arrive at solutions. As a result, the time it takes to complete an activity should decline. Third, fewer changes later in the process results in faster and less expensive product design. When problems are discovered late, they take more time and money to solve.
Product design requires the expertise and decision-making skills of all parts of the organization. Marketing, engineering, operations, finance, accounting, and information systems all have important roles. Marketing's role is to evaluate consumer needs, determine potential impact of competitive pressure, and measure the external environment. Engineering's role is to shape the product through design, determine the process by which the product will be made, and consider the interface between the product and the people. Operations' role is to ensure that the product can be produced in full-scale production. Finance's role is to develop plans for raising the capital to support the product in full-scale production and to assist in the evaluation of the product's profit potential. Accounting and information systems provide access to information for decision making. Cross-functional teamwork and knowledge sharing are thus keys to success.
Comments
Post a Comment
Thanks for viewing and passing through NMEE blog. Keep following the blog